4、三角形中的中位线
连接三角形两边中点的线段叫做三角形的中位线。
(1)三角形共有三条中位线,并且它们又重新构成一个新的三角形。
(2)要会区别三角形中线与中位线。
三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。
三角形中位线定理的作用:
位置关系:可以证明两条直线平行。
数量关系:可以证明线段的倍分关系。
常用结论:任一个三角形都有三条中位线,由此有:
结论1:三条中位线组成一个三角形,其周长为原三角形周长的一半。
结论2:三条中位线将原三角形分割成四个全等的三角形。
结论3:三条中位线将原三角形划分出三个面积相等的平行四边形。
结论4:三角形一条中线和与它相交的中位线互相平分。
结论5:三角形中任意两条中位线的夹角与这夹角所对的三角形的顶角相等。
三角形
1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形
2、三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边
3、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高.
4、中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线
5、角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线
6、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性
7、多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形
8、多边形的内角:多边形相邻两边组成的角叫做它的内角
9、多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角
10、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线
11、正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形
12、平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面,
13、公式与性质:
(1)三角形的内角和:三角形的内角和为180°
(2)三角形外角的性质: