一、不等式
不等式及其解集
1.不等式:用不等号(包括:>、
、
、<、≠)表示大小关系的式子。
2.不等式的解:使不等式成立的未知数的值,叫不等式的解。
3.不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。
不等式的性质:
性质1:如果a>b,b>c,那么a>c(不等式的传递性).
性质2:不等式的两边同加(减)同一个数(或式子),不等号的方向不变。如果a>b,那么a+c>b+c(不等式的可加性).
性质3:不等式的两边同乘(除以)同一个正数,不等号的方向不变。不等式的两边同乘(除以)同一个负数,不等号的方向改变。
如果a>b,c>0,那么ac>bc;如果a>b,c<0,ac
十、镶嵌
当围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个周角时,就能拼成一个平面图形。
1、用同一种多边形镶嵌:这种多边形可以不是正多边形(例如三角形、长方形、平行四边形、菱形、梯形等),也可以是正多边形(例如正三角形、正方形、正六边形)。三角形,四边形均可单独镶嵌。
2、用多种多边形镶嵌:则每种多边形必须是正多边形。例如:3个正三角+2个正方形,4个正三角形+1个正六边形,2个正三角形+2个正六边形,1个正方形+2个正八边形,2个正五边形+1个正十边形,1个正六边形+2个正十二边形,1个正三角形+1个正八边形+1个正二十四边形,1个正方形+1个正六边形+1个正十二边形,1个正三角形+2个正方形+1个正六边形,如此等等。
例:小明家需要购买地板砖铺房间地面,现有正三角形、正四边形、正五边形、正六边形、正十二边形这五种地板砖,则能有哪几种选择?
第八章二元一次方程组
一、二元一次方程组
1、概念:二元一次方程:含有两个未知数,且未知数的指数(即次数)都是1的方程,叫二元一次方程。
二元一次方程组:两个二元一次方程(或一个是一元一次方程,另一个是二元一次方程;或两个都是一元一次方程;但未知数个数仍为两个)合在一起,就组成了二元一次方程组。
2、二元一次方程的解和二元一次方程组的解:
使二元一次方程左右两边的值相等(即等式成立)的两个未知数的值,叫二元一次方程的解。
使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫二元一次方程组的解。
注:①、因为二元一次方程含有两个未知数,所以,二元一次方程的解是一组(对)数,用大括号联立;②、一个二元一次方程的解往往不是唯一的,而是有许多组;③、而二元一次方程组的解是其中两个二元一次方程的公共解,一般地,只有唯一的一组,但也可能有无数组或无解(即无公共解)。
二元一次方程组的解的讨论:
已知二元一次方程组①、当a1/a2≠b1/b2时,有唯一解;②、当a1/a2=b1/b2≠c1/c2时,无解;③、当a1/a2=b1/b2=c1/c2时,有无数解。
3、用含一个未知数的代数式表示另一个未知数:
用含X的代数式表示Y,就是先把X看成已知数,把Y看成未知数;用含Y的代数式表示X,则相当于把Y看成已知数,把X看成未知数。