cos(π—α)=—cosα
sin(π+α)=—sinα
cos(π+α)=—cosα
tanA=sinA/cosA
tan(π/2+α)=—cotα
tan(π/2—α)=cotα
tan(π—α)=—tanα
tan(π+α)=tanα
诱导公式记背诀窍:奇变偶不变,符号看象限
万能公式
sinα=2tan(α/2)/[1+tan^(α/2)]
cosα=[1—tan^(α/2)]/1+tan^(α/2)]
tanα=2tan(α/2)/[1—tan^(α/2)]
其它公式
(1)(sinα)^2+(cosα)^2=1
(2)1+(tanα)^2=(secα)^2
(3)1+(cotα)^2=(cscα)^2
证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2即可
(4)对于任意非直角三角形,总有
tanA+tanB+tanC=tanAtanBtanC
证:
A+B=π—C
tan(A+B)=tan(π—C)
(tanA+tanB)/(1—tanAtanB)=(tanπ—tanC)/(1+tanπtanC)
整理可得
tanA+tanB+tanC=tanAtanBtanC
得证
同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立
由tanA+tanB+tanC=tanAtanBtanC可得出以下结论
(5)cotAcotB+cotAcotC+cotBcotC=1