类型五:镶嵌问题
5.分别画出用相同边长的下列正多边形组合铺满地面的设计图。
(1)正方形和正八边形;
(2)正三角形和正十二边形;
(3)正三角形、正方形和正六边形。
思路点拨:只要在拼接处各多边形的内角的和能构成一个周角,那么这些多边形就能作平面镶嵌。
解析:正三角形、正方形、正六边形、正八边形、正十二边形的每一个内角分别是60°、90°、120°、135°、150°。
(1)因为90+2×135=360,所以一个顶点处有1个正方形、2个正八边形,如图(1)所示。
(2)因为60+2×150=360,所以一个顶点处有1个正三角形、2个正十二边形,如图(2)所示。
(3)因为60+2×90+120=360,所以一个顶点处有1个正三角形、1个正六边形和2个正方形,如图(3)
所示。
总结升华:用两种以上边长相等的正多边形组合成平面图形,实质上是相关正多边形“交接处各角之和能否拼成一个周角”的问题。举一反三:
【变式1】分别用形状、大小完全相同的①三角形木板;②四边形木板;③正五边形木板;④正六边形木板作平面镶嵌,其中不能镶嵌成地板的是()A、①B、②C、③D、④
解析:用同一种多边形木板铺地面,只有正三角形、四边形、正六边形的木板可以用,不能用正五边形木板,故
【变式2】用三块正多边形的木板铺地,拼在一起并相交于一点的各边完全吻合,其中两块木板的边数都是8,则第三块木板的边数应是()
A、4B、5C、6D、8
【答案】A(提示:先算出正八边形一个内角的度数,再乘以2,然后用360°减去刚才得到的积,便得到第三块木板一个内角的度数,进而得到第三块木板的边数)
练习
1.多边形的一个内角的外角与其余内角的和为600°,求这个多边形的边数.
2.n边形的内角和与外角和互比为13:2,求n.
3.五边形ABCDE的各内角都相等,且AE=DE,AD∥CB吗?
4.将五边形砍去一个角,得到的是怎样的图形?
5.四边形ABCD中,∠A+∠B=210°,∠C=4∠D.求:∠C或∠D的度数.
6.在四边形ABCD中,AB=AC=AD,∠DAC=2∠BAC.
求证:∠DBC=2∠BDC.
第十二章全等三角形
一、全等三角形
能够完全重合的两个三角形叫做全等三角形。一个三角形经过平移、翻折、旋转可以得到它的全等形。
2、全等三角形有哪些性质
(1):全等三角形的对应边相等、对应角相等。