13.定理:对于向量a(a≠0)、b,如果有一个实数λ,使b=a,那么a与b共线。
相反,已知向量a与b
共线,a≠0,且向量b的长度是向量a的长度的μ倍,即|b|=μ|a|,那么当a与b同方向时,有b=a;当a
与b反方向时,有b=a。
则得如下定理:向量向量a(a≠0)与b共线,当且仅当有一个实数λ,使b=a。
14.平面向量基本定理:如果e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有且
只有一对实数1、2,使a1e12e2。
我们把不共线的向量e1、e2叫做表示这一平面内所有向量的一组基
底。
15.向量a与b的夹角:已知两个非零向量a和b。
作OAa,OBb,则AOB(0°≤θ≤180°)叫
做向量a与b的夹角。
当θ=0°时,a与b同向;当θ=180°时,a与b反向。
如果a与b的夹角是90°,我们说a与b垂直,记作ab。
16.补充结论:已知向量a、b是两个不共线的两个向量,且m、n∈R,若manb0,则m=n=0。
17.正交分解:把一个向量分解为两个互相垂直的向量,叫做把向量正交分解。
18.两个向量和(差)的坐标分别等于这两个向量相应坐标的和(差)。
即若a(x1,y1),b(x2,y2),则
ab(x1x2,y1y2),ab(x1x2,y1y2)
19.实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标。
即若a(x1,y1),则a(x1,y1)
20.当且仅当x1y2-x2y1=0时,向量a、b(b≠0)共线
x1x2y1y2
21.定比分点坐标公式:当P1PPP2时,P点坐标为(,)
11
①当点P在线段P1P2上时,点P叫线段P1P2的内分点,λ>0②当点P在线段P1P2的延长线上时,P叫线段P1P2的外分点,λ<-1;当点P在线段P1P2的反向延长线上时,P叫线段P1P2的外分点,-1<λ<0.22.从一点引出三个向量,且三个向量的终点共线,
B
则OCOAOB,其中λ+μ=1
23.数量积(内积):已知两个非零向量a与b,我们把数量|a||b|cos叫做a与b的数量积(或内积),记作a2b即a2b=|a||b|cos。
其中θ是a与b的夹角,