互质数:公约数只有1的两个数,叫做互质数。相临两个数一定互质。两个连续奇数一定互质。1和任何数互质。
通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数)
约分:把一个分数的分子、分母同时除以公约数,分数值不变,这个过程叫约分。
最简分数:分子、分母是互质数的分数,叫做最简分数。分数计算到最后,得数必须化成最简分数。
质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。
质数(素数)与合数:一个数的约数只有1和它本身的数叫做质数,也叫素数。反之,一个数的约数除了1和它本身以外,还有其他的约数,这个数就叫合数。
1是否质数?由于1的约数只有1个,所以1既不是质数,也不是合数。
公约数:几个数公有的约数,叫做公约数。它的个数是有限的,既有最大的,也有最小的。
互质数:两个数的公约数只有1,而没有其他公约数的,这两个数就叫互质数。
质数与互质数:这两个概念没有什么联系。两个质数,不能肯定就是互质数。只有两个不相同的质数,才能肯
定是互质数。另外,两个合数既可能是互质数,也可能不是互质数,但不能说两个合数一定不是互质数。
质因数:把一个合数分解成几个质数相乘的形式,这样的质数叫做质因数。
分解质因数:把一个合数分解成几个质数相同的形式,就叫做分解质因数。
公倍数:几个数公有的倍数,叫做公倍数。它的个数是无限的,只有最小的,没有最大的。
最大公约数:几个数公有的约数中,最大的一个就叫做这几个数的最大公约数。
最小公倍数:几个数公有的无限个倍数中,最小的一个,就叫做这几个数的最小公倍数。
能被2整除的判断方法
一个数能否被2整除,只要看这个数的末尾是否有0、2、4、6、8这五个数的其中一个即可。
能被5整除的判断方法
一个数能否被5整除,只要看这个数的末尾是否有0、5这两个数的其中一个即可。
能被3整除的判断方法
一个数能否被3整除,只要看这个数的各个数位上的数字和能否被3整除。
倍数特征:
2的倍数的特征:各位是0,2,4,6,8。
3(或9)的倍数的特征:各个数位上的数之和是3(或9)的倍数。
5的倍数的特征:各位是0,5。
4(或25)的倍数的特征:末2位是4(或25)的倍数。
8(或125)的倍数的特征:末3位是8(或125)的倍数。
7(11或13)的倍数的特征:末3位与其余各位之差(大-小)是7(11或13)的倍数。
17(或59)的倍数的特征:末3位与其余各位3倍之差(大-小)是17(或59)的倍数。