答案1
设走的平路是X公里山路是Y公里
因为1点到七点共用时间6小时返回为2.5小时则去时用3.5小时
Y/3-Y/6=1小时
Y=6公里
去时共用3.5小时则X/4+Y/3=3.5 X=6
所以总路程为2(6+6)=24km
答案2
解:春游共用时:7:00-1:00=6(小时)
上山用时:6-2.5=3.5(小时)
上山多用:3.5-2.5=1(小时)
山路:(6-3)×1÷(3÷6)=6(千米)
下山用时:6÷6=1(小时)
平路:(2.5-1)×4=6(千米)
单程走路:6+6=12(千米)
共走路:12×2=24(千米)
答:他们共走24千米。
小学数学奥数基础教程(六年级)
本教程共30讲
枚举法
我们在课堂上遇到的数学问题,一般都可以列出算式,然后求出结果。但在数学竞赛或生活中却经常会遇到一些有趣的题目,由于找不到计算它们的算式,似乎无从下手。但是,如果题目所述的情况或满足题目要求的对象能够被一一列举出来,或能被分类列举出来,那么问题就可以通过枚举法获得解决。所谓枚举法,就是根据题目要求,将符合要求的结果不重复、不遗漏地一一列举出来,从而解决问题的方法。
例1小明和小红玩掷骰子的游戏,共有两枚骰子,一起掷出。若两枚骰子的点数和为7,则小明胜;若点数和为8,则小红胜。试判断他们两人谁获胜的可能性大。
分析与解:将两枚骰子的点数和分别为7与8的各种情况都列举出来,就可得到问题的结论。用a+b表示第一枚骰子的点数为a,第二枚骰子的点数是b的情况。
出现7的情况共有6种,它们是:
1+6,2+5,3+4,4+3,5+2,6+1。
出现8的情况共有5种,它们是:
2+6,3+5,4+4,5+3,6+2。
所以,小明获胜的可能性大。
注意,本题中若认为出现7的情况有1+6,2+5,3+4三种,出现8的情况有2+6,3+5,4+4也是三种,从而得“两人获胜的可能性一样大”,那就错了。
例2数一数,右图中有多少个三角形。