51、想:根据计划每天修720米,这样实际提前的长度是(720×3-1200)米。根据每天多修80米可求已修的天数,进而求公路的全长。解:已修的天数:(720×3-1200)÷80=960÷80=12(天)公路全长:
(720+80)×12+1200=800×12+1200=9600+1200=10800(米)
答:这条公路全长10800米。
52、想:根据已知条件,可求12个纸箱转化成木箱的个数,先求出每个木箱装多少双,再求每个纸箱装多少双。
解:12个纸箱相当木箱的个数:2×(12÷3)=2×4=8(个)一个木箱装鞋的双数:
1800÷(8+4)=18000÷12=150(双)一个纸箱装鞋的双数:
150×2÷3=100(双)
答:每个纸箱可装鞋100双,每个木箱可装鞋150双
53、想:由已知条件可知道,每天用去30袋水泥,同时用去30×2袋沙子,才能同时用完。但现在每天只用去40袋沙子,少用(30×2-40)袋,这样才累计出120袋沙子。因此看120袋里有多少个少用的沙子袋数,便可求出用的天数。进而可求出沙子和水泥的总袋数。解:水泥用完的天数:
120÷(30×2-40)=120÷20=6(天)水泥的总袋数:30×6=180(袋)沙子的总袋数:180×2=360(袋)
答:运进水泥180袋,沙子360袋。
54、想:根据每个保温瓶的价钱是每个茶杯的4倍,可把5个保温瓶的价钱转化为20个茶杯的价钱。这样就可把5个保温瓶和10个茶杯共用的90元钱,看作30个茶杯共用的钱数。解:每个茶杯的价钱:90÷(4×5+10)=3(元)每个保温瓶的价钱:3×4=12(元)
答:每个保温瓶12元,每个茶杯3元。
55、分析:观察可知:26-15=11,48-37=11,59-48=11,从而发现规律,表中每行的数后一个数与前一个数的差为11,据此规律解出即可.
解答:解:26-15=11,48-37=11,59-48=11,表中每行的数后一个数与前一个数的差为11,
所以:15-11=4;70+11=81;
所以,圆形代表4,三角形代表81.
56、想:由已知条件可知,16千克和9千克的差正好是半桶油的重量。9千克是半桶油和桶的重量,去掉半桶油的重量就是桶的重量。解:9-(16-9)=9-7=2(千克)
答:桶重2千克。
57、想:由已知条件可知,10千克与5.5千克的差正好是半桶油的重量,再乘以2就是原来油的重量。
解:(10-5.5)×2=9(千克)答:原来有油9千克。
58、想:由已知条件可知,桶里原有水的(5-2)倍正好是(22-10)千克,由此可求出桶里原有水的重量。
解:(22-10)÷(5-2)=12÷3=4(千克)
答:桶里原有水4千克。
59、想:从“小红给小华5本,两人故事书的本数就相等”这一条件,可知小红比小华多(5×2)
本书,用共有的36本去掉小红比小华多的本数,剩下的本数正好是小华本数的2倍。解:小华有书的本数:(36-5×2)÷2=13(本)小红有书的本数:13+5×2=23(本)
答:原来小红有23本,小华有13本。
60、想:由已知条件知,5桶油共取出(15×5)千克。由于剩下油的重量正好等于原来2桶油的重量,可以推出(5-2)桶油的重量是(15×5)千克。解:15×5÷(5-2)=25(千克)答:原来每桶油重25千克。
61、想:女工比男工少35人,男、女工各调出17人后,女工仍比男工少35人。这时男工人数是女工人数的2倍,也就是说少的35人是女工人数的(2-1)倍。这样就可求出现在女工多少人,然后再分别求出男、女工原来各多少人。解:35÷(2-1)=35(人)
女工原有:35+17=52(人)男工原有:52+35=87(人)