能被3整除的数的特性:一个数的各位上数的和能被3整除,这个数就能被3整除。
7.质因数:假如一个自然数的因数是质数,这个因数就叫做这个自然数的质因数。
8.分解质因数:把一个合数用质因数相乘的形式表达出来,叫做分解质因数。
9.公约数、公倍数:几个数公有的约数,叫做这几个数的公约数;其中最大的一个,
叫做这几个数的最大公约数。
几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数。
10.一般关系的两个数的最大公约数、最小公倍数用短除法来求;互质关系的两个数最大公约数是1,最小公倍数是两数之积;倍数关系的两个数的最大公约数是小数,最小公倍
数是大数。
11.互质数:公约数只有1的两个数叫做互质数。
12.两数之积等于最小公倍数和最大公约数的积。
三.四则运算
1.一个加数=和-另一个加数被减数=差+减数减数=被减数-差
一个因数=积÷另一个因数被除数=商×除数除数=被除数÷商
2.在四则运算中,加、减法叫做第一级运算,乘、除法叫做第二级运算。
3.运算定律:
(1)加法互换律:a+b=b+a乘法互换律:a×b=b×a
两个数相加,互换加数的位置,它们的和不变。
两个数相加,互换因数的位置,它们的积不变。
(2)加法结合律:(a+b)+c=a+(b+c)乘法结合律:(a×b)×c=a×(b×c)
三个数相加,先把前两个数相加,再同第三个数相加;或者先把后两个数相加,再同第一个数相加,它们的和不变。
三个数相乘,先把前两个数相乘,再同第三个数相乘;或者先把后两个数相乘,再同第
一个数相乘,它们的积不变。
(3)乘法分派律:(a+b)×c=a×c+b×c
两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
(4)减法的性质:a-b-c=a-(b+c)除法的性质:a÷b÷c=a÷(b×c)
从一个数里连续减去两个数,等于从这个数里减去两个减数的和。
一个数连续除以两个数,等于这个数除以两个除数的积。
四.关系式
1.速度×时间=路程路程÷时间=速度路程÷速度=时间
工作效率×工作时间=工作总量